Diagnostic Modeling with G-1 Obs.

Plume Evolution

 L_N/Q (fraction radicals removed by NO_x)

describes transition from: source-like VOC sensitive to background-like NO_x sensitive

Ozone Production Efficiency

OPEx = $\Delta O_3/\Delta NO_z$ OPEr = $\Delta O_3/(\Delta NO_z + 2\Delta peroxide)$

How much O₃ is produced? An observable to test models against

Future Directions

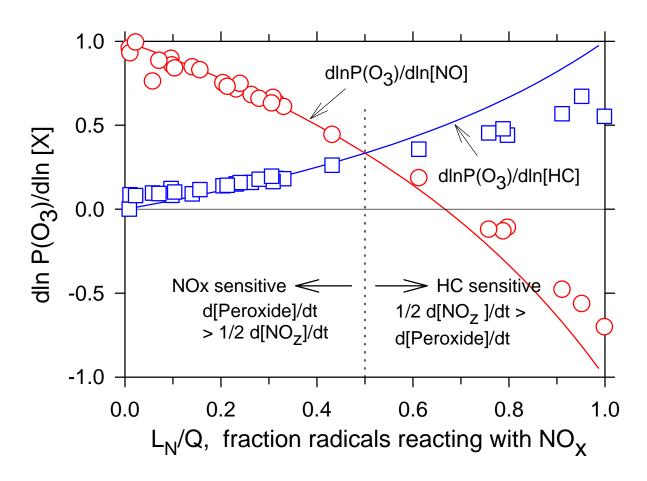
Larry Kleinman Brookhaven National Laboratory Feb. 2001

Why L_N/Q ?

Radical Source = Radical sink

 $Q = L_N(radical+NO_x) + L_R(radical+radical)$

 L_N/Q = fraction radicals removed by NO_x


An Old Result:

 L_N/Q tells us all about $P(O_3)$ sensitivity dln $P(O_3)/dln[NO] = (1-3/2L_N/Q)/(1-/2L_N/Q)$ dln $P(O_3)/dln[VOC] = 1/2L_N/Q/(1-1/2L_N/Q)$

A New Result

 L_N/Q is a simple analytic function of NO_x , VOCs, and Q

P(O₃) Sensitivity Depends Only on L_N/Q (Old Result)

Data points are CSS calculations from SOS 95 Solid lines are analytic results

L_N/Q Depends on NO_X, VOCs, Q

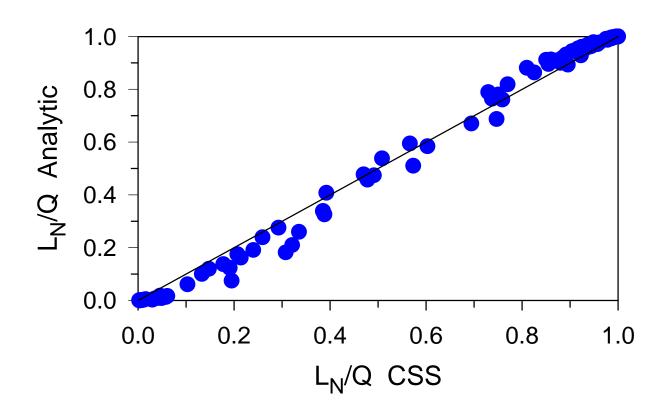
(New Result)

$$L_N/Q = -\alpha/2 + (\alpha^2 + 4\alpha)^{1/2}/2$$

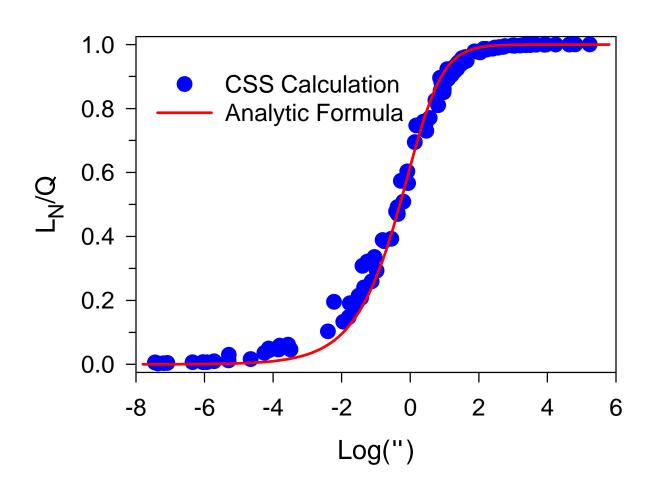
$$\alpha = (k_1[NO_2] k_3 \gamma [NO]/(k_2[VOC]))^2 (1/(2 Q k_{eff}))$$

 $k_1: OH + NO_2 \rightarrow HNO_3$

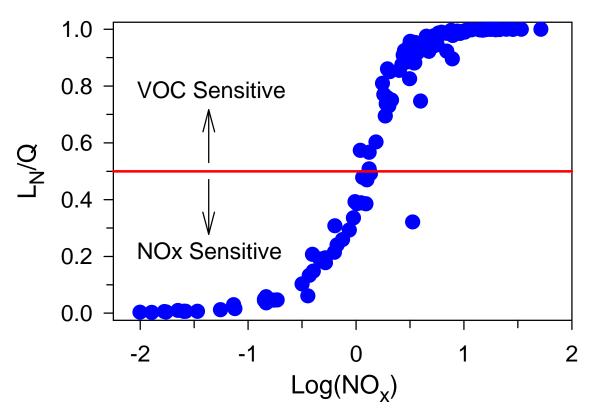
 k_2 : OH + VOC \rightarrow HO₂ or RO₂


 k_3 : $HO_2 + NO \rightarrow NO_2$

 k_{eff} : Peroxy + Peroxy \rightarrow Peroxide


 L_N/Q is a monotonic increasing function of:

$$([NO_X]^4/[VOC]^2)/Q$$


Test of L_N/Q Analytic Formula Data from Phoenix

L_N/Q Depends on $([NO_X]^4/[VOC]^2)/Q$

L_N/Q Depends Mainly on NO_X (Phoenix data)

Note very sharp transition at $NO_x = 1ppb$ from VOC to NO_x sensitive chemistry

PLUME EVOLUTION

 L_N/Q Depends on $(NO_X)^2 * (NO_X/VOC)^2 * 1/Q$

- OH Chemistry: Decreases NO_X and (NO_X/VOC)
- Dilution: Decreases NO_X and (NO_X/VOC)
- O₃ Production: Increases Q

For all 3 reasons a plume evolves from VOC sensitive to NO_X sensitive chemistry

Ozone Production Efficiency

 $OPE_x = \Delta O_x/\Delta NO_z$ and $OPE_R = \Delta O_x/\Delta (NO_z + 2 \text{ peroxide})$

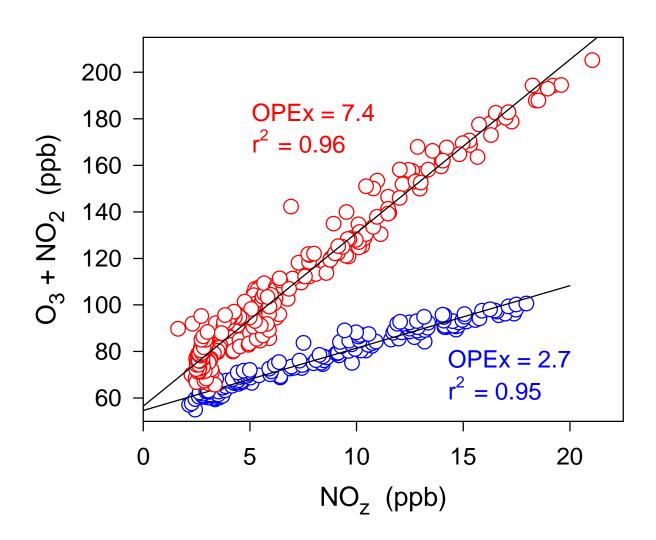
Number of molecules O₃ formed per NO_x molecule oxidized, or per Radical used

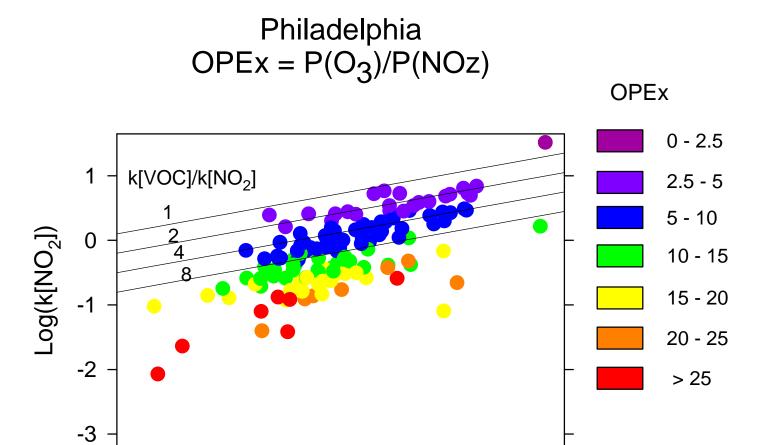
Determined from observed O₃+NO₂ and NO_z in a plume – most often as a regression slope

Is this OK?

Great Correlations

Why?


Values vary from place to place


What does this tells us about chemistry and control measures?

CSS calculations give us $P(O_x)/P(NO_z)$

Can OPE_x be determined from local calculations?

Ozone Production efficiency Texas 821 PM 2000 Phoenix 601 PM 1998

8.0

Log(k[VOC])

1.0

1.2

0.2

0.4

0.6

Future Directions

Use Eulerian Model Output from PNNL

Surrogate reality to augment G-1

True Lagrangian "experiment"

Emission controls

Relation between integrated quantity (ie, O_3) and instantaneous quantity (ie, $P(O_3)$)

Use NCAR Master Mechanism

Role of secondary organics for oxidants and aerosols